Introduction

The aim of this document is to give an at-a-glance guide to how the White Rose Maths curriculum links to the Key Stage 1 and 2 national curriculum, and how it progresses through topics.

In each of the major topic areas (Number, Measurement, Geometry and Statistics), the curriculum has been broken down into key areas. For each of these areas, you can then see which NC objectives are covered in that year, together with the term and block in which that objective is first met in version 3 of the White Rose Maths schemes.

- Number and place value NPV
- Number facts NF
- Addition and subtraction AS
- Multiplication and division MD
- Fractions F

Most strands are split into a number of separate criteria. For each of these, the key White Rose Maths steps are listed under the name(s) of the block(s) of learning in

These are the NC objectives. In our schemes these are broken

Many schools are using the 'Ready to progress' criteria produced by the DfE as part of their assessments of pupils' learning. This document also lists the key steps in the White Rose Maths schemes of learning that support each of the 'Ready to progress' criteria, in the same sections as the national curriculum objectives. In many cases, the criteria are also addressed in other steps and in other blocks, for example looking at addition and subtraction in the context of measures. We have not listed every single instance as this would become unwieldly.

So far, we have added the Autumn steps from the new schemes. We will update this document when the Spring and Summer steps are released.

Place value

Place value: Count

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
- count to and across 100, forwards and backwards, beginning with 0 or 1 , or from any given number - Count numbersto 100 in numerals; count in multiples of twos, fives and tens	- count in steps of 2, 3 , and 5 from 0 , and in tens from any number, forward and backward	- count from 0 in multiples of 4,8 , 50 and 100; find 10 or 100 more or less than a given number	- count in multiples of $6,7,9,25$ and 1000 - count backwards through zero to include negative numbers	- count forwards or backwards in steps of powers of 10 for any given number up to 1000000 - count forwards and backwards with positive and negative whole numbers, including through zero	
Autumn 1 Spring 1 Spring 3 Summer 4	Autumn 1	Autumn 1 Autumn 3	Autumn 1 Autumn 4	Autumn 1 Summer 4	

Place value: Represent

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
- identify and represent numbers using objects and pictorial representations - read and write numbers to 100in numerals - read and write numbers from 1 to 20 in numerals and words	- read and write numbers to at least 100 in numerals and in words - identify, represent and estimate numbers using different representations, including the number line	- identify, represent and estimate numbers using different representations read and write numbers up to 1000 innumerals and in words	- identify, represent and estimate numbers using different representations read Roman numerals to 100 (। to C) and know that over time, the numeral system changed to include the concept of zero and place value	- read, write, (order and compare) numbers to at least 1000000 and determine the value of eachdigit - read Roman numerals to 1000 (M) and recognise years written in Roman numerals	- read, write,(order and compare) numbers up to 10 000000 and determine the value of eachdigit
Autumn 1 Spring 1 Spring 3 Summer 4	Autumn 1				

Place value: Use and compare

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
- given a number, identify one more and one less	- recognise the place value of each digit in a two-digit number (tens, ones) - compare and order numbers from 0 up to 100; use <, > and = signs	- recognise the place value of each digit in a three-digit number (hundreds, tens, ones) - compare and order numbers up to 1000	- find 1000 moreor less than a given number - recognise the place value of each digit in a four-digit number (thousands, hundreds, tens, and ones) - order and compare numbers beyond 1000	- (read, write) order and compare numbers to at least 1000000 and determine the value of eachdigit	- (read, write), order and compare numbers up to 10 000000 and determine the value of eachdigit
Autumn 1 Spring 1 Spring 3 Summer 4	Autumn 1				

Place value: Problems/Rounding

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	- use place value and numberfacts to solve problems	- solve number problems and practical problems involving these ideas	- round any number to the nearest 10 , 100 or 1000 - solve number and practical problems that involve all of the above and with increasingly large positive numbers	- interpret negative numbers in context - round any number up to 1 000000 to the nearest 10, 100, 1000, 10000 and 100000 - solve number problems and practical problems that involve all of the above	- round any whole number to a required degree of accuracy - use negative numbers in context, and calculate intervals across zero - solve number and practical problems that involve all of the above
	Autumn 1				

Year 1 RTP Place value

Ready to progresscriteria	Block	Steps
1NPV-1 Count within 100, forwards and backwards, starting with any number.	Autumn 1	6 - Count on from any number 8 - Count backwards within 10
	Spring 1	Spring steps to follow in November 2022
	Spring 3	Spring steps to follow in November 2022
	Summer 4	Summer steps to follow in March 2023
1NPV-2 Reason about the location of numbers to 20 within the linear number system, including comparing using < > and =	Autumn 1	11 - Fewer, more, same 12 - Less than, greater than, equal to 13 - Compare numbers 14 - Order objects and numbers 15 - The number line
	Spring 1	Spring steps to follow in November 2022
	Spring 3	Spring steps to follow in November 2022

Year 2 RTP Place value

Ready to progress criteria	Block	Steps
2NPV-1 Recognise the place value of each digit in two-digit numbers, and compose and decompose two-digit numbers using standard and non-standard partitioning.	Autumn 1	3-Recognise tens and ones 4- Use a place value chart 5- Partition numbers to 100 $7-$ Flexibly partition numbers to 100 8 - Write numbers in expanded form
2NPV-2 Reason about the location of any two-digit number in the linear number system, including identifying the previous and next multiple of 10	Autumn 1	$9-10$ s on the number line to 100 $10-10$ sand 1s on the number line to 100 $11-$ Estimate numbers on the number line

Year 3 RTP Place value

Ready to progresscriteria	Block	Steps
3NPV-1 Know that 10 tens are equivalent to 1 hundred, and that 100 is 10 times the size of 10 ; apply this to identify and work out how many 10s there are in other three-digit multiples of 10	Autumn 1	4 - Hundreds
	Autumn 2	10 - Make connections
	Autumn 3	4 - Multiples of 5 and 10
	Spring 4	Spring steps to follow in November 2022
3NPV-2 Recognise the place value of each digit in three-digit numbers, and compose and decompose three-digit numbers using standard and non-standard partitioning.	Autumn 1	5 - Represent numbers to 1,000 6 - Partition numbers to 1,000 7 - Flexible partitioning of numbers to 1,000 8 Hundreds, tens and ones
3NPV-3 Reason about the location of any three-digit number in the linear number system, including identifying the previous and next multiple of 100 and 10	Autumn 1	9 - Find 1,10 or 100 more orless 10 - Number line to 1,000 11 - Estimate on a number line to 1,00012 - Compare numbers to 1,000 13 - Order numbers to 1,000
3NPV-4 Divide 100 into 2, 4, 5 and 10 equal parts, and read scales/number lines marked in multiples of 100 with $2,4,5$ and 10 equal parts.	Autumn 1	10 - Number line to 1,000 11 - Estimate on a number line to 1,00014 - Count in 50s
	Spring 4	Spring steps to follow in November 2022

Year 4 RTP Place value

Ready to progresscriteria	Block	Steps
4NPV-1 Know that 10 hundreds are equivalent to 1 thousand, and that 1,000 is 10 times the size of 100; apply this to identify and work out how many 100s there are in other four-digit multiples of 100	Autumn 1	4 - Thousands
	Spring 1	Spring steps to follow in November 2022
4NPV-2 Recognise the place value of each digit in four-digit numbers, and compose and decompose four-digit numbers using standard and non-standard partitioning.	Autumn 1	5 - Represent numbers to 10,000 6 - Partition numbers to 10,000 7 - Flexible partitioning of numbers to 10,000
4NPV-3 Reason about the location of any four-digit number in the linear number system, including identifying the previous and next multiple of 1,000 and 100 , and rounding to the nearest of each.	Autumn 1	8 - Find 1, 10, 100, 1,000 more or less 9 - Number line to 10,000 10 - Estimate on a number line to 10,00011 - Compare numbers to 10,000 12 - Order numbers to 10,00014 - Round to the nearest 1015 - Round to the nearest 100 16- Round to the nearest 1,000 17 - Round to the nearest 10,000
4NPV-4 Divide 1,000 into $2,4,5$ and 10 equal parts, and read scales/number lines marked in multiples of 1,000 with $2,4,5$ and 10 equal parts.	Autumn 1	9 - Number line to 10,000 10 - Estimate on a number line to 10,000

Year 5 RTP Place value

Ready to progress criteria	Block	Steps
5NPV-1 Know that 10 tenths are equivalent to 1 one, and that 1 is 10 times the size of 0.1. Know that 100 hundredths are equivalent to 1 one, and that 1 is 100 times the size of 0.01. Know that 10 hundredths are equivalent to 1 tenth, and that 0.1 is 10 times the size of 0.01	Spring 3	Spring steps to follow in November 2022
5NPV-2 Recognise the place value of each digit in numbers with up to 2 decimal places, and compose and decompose numbers with up to 2 decimal places using standard and non- standard partitioning.	Spring 3	Spring steps to follow in November 2022
5NPV-3 Reason about the location of any number with up to 2 decimals places in the linear number system, including identifying the previous and next multiple of 1 and 0.1 and rounding to the nearest of each.	Spring 3	Spring steps to follow in November 2022
5NPV-4 Divide 1 into 2, 4,5 and 10 equal parts, and read scales/number lines marked in units of 1 with 2, 4, 5 and 10 equal parts.	Spring 3	Spring steps to follow in November 2022
5NPV-5Convertbetweenunitsofmeasure, including using common decimals and fractions.	Summer 5	Summer steps to follow in March 2023

Year 6 RTP Place value

Ready to progresscriteria	Block	Steps
6NPV-1 Understand the relationship between powers of 10 from 1 hundredth to 10 million, and use this to make a given number 10,100 , 1,000, 1 tenth, 1 hundredth or 1 thousandth times the size (multiply and divide by 10, 100 and 1,000).	Autumn 1	4 - Powers of 10
6NPV-2 Recognise the place value of each digit in numbers up to 10 million, including decimal fractions, and compose and decompose numbers up to 10 million using standard and non-standard partitioning.	Autumn 1	1 - Numbers to 1,000,000 2 - Numbers to 10,000,000 3 - Read and write numbers to $10,000,000$
6NPV-3 Reason about the location of any number up to 10 million, including decimal fractions, in the linear number system, and round numbers, as appropriate, including in contexts.	Autumn 1	6 - Compare and order any integers 7 Round any integers
6NPV-4 Divide powers of 10 , from 1 hundredth to 10 million, into $2,4,5$ and 10 equal parts, and read scales/number lines with labelled intervals divided into $2,4,5$ and 10 equal parts.	Autumn 1	5 - Number line to 10,000,000
	Autumn 5	2 - Convert metric measures
	Spring 3	Spring steps to follow in November 2022

Addition

and

subtraction

Addition \& subtraction: Calculations

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
- add and subtract one-digit and twodigit numbers to 20, includingzero	- add and subtract numbers using concrete objects, pictorial representations, and mentally, including: $>$ a two-digit number and ones $>$ a two-digit number and tens two two-digit numbers > adding threeonedigit numbers	- add and subtract numbers mentally, including: a three-digit number andones a three-digit number and tens $>$ a three-digit number and hundreds - add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction	- add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate	- add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction) - add and subtract numbers mentally with increasingly large numbers	- perform mental calculations, including with mixed operations and large numbers - use their knowledge of the order of operations to carry out calculations involving the four operations
Autumn 2 Spring 2	Autumn 2				

Addition \& subtraction: Problems

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
- solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=$ \square $\square-9$	- solve problems with addition and subtraction: using concrete objects and pictorial representations, including those involving numbers, quantities and measures > applying their increasing knowledge of mental and written methods	- solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction	- solve addition and subtraction twostep problems in contexts, deciding which operations and methods to use and why	- solve addition and subtraction multistep problems in contexts, deciding which operations and methods to use and why - solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign	- solve addition and subtraction multistep problems in contexts, deciding which operations and methods to use and why
Autumn 2 Spring 2	Autumn 2				

Year 1 RTP Numberfacts

Ready to progresscriteria	Block	Steps
1NF-1 Develop fluency in addition and subtraction facts within 10	Autumn 2	5 - Number bonds within 10 6 -Systematic number bonds within 107 - Number bonds to 10
	Spring 2	Spring steps to follow in November 2022
1NF-2 Count forwards and backwards in multiples of 2,5 and 10 , up to 10 multiples, beginning with any multiple, and count forwards and backwards through the odd numbers.		See under Multiplication \& division

Year 2 RTP Numberfacts

Ready to progresscriteria	Block	Steps
2NF-1 Securefluencyinadditionand subtraction facts within 10, through continued practice.	Autumn Block 2	1 - Bonds to 10 - - Add by making 108 - Add to the next 10 11 -Subtract from a 10

Year 3 RTP Numberfacts

Ready to progresscriteria	Block	Steps
3NF-1 Secure fluency in addition and subtraction facts that bridge 10, through continued practice.	Autumn Block 2	6 - Add 1s across a 10 7 - Add 10s across a 100 8 - Subtract 1s across a 109 - Subtract 1s across a 100 13 - Add two numbers (across a 10) 14 - Add two numbers (across a 100) 15 - Subtract two numbers (across a 10) 16 - Subtract two numbers (across a 100)
3NF-2 Recall multiplication facts, and corresponding division facts, in the 10, 5, 2, 4 and 8 multiplication tables, and recognise products in these multiplication tables as multiples of the correspondingnumber.		See under Multiplication \& division
3NF-3 Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 10).		See under Multiplication \& division

Year 1 RTP Addition \& subtraction

Ready to progresscriteria	Block	Steps
1AS-1 Compose numbers to 10 from 2 parts, and partition numbers to 10 into parts, including recognising odd and even numbers.	Autumn Block 2	5 - Number bonds within 10 6 -Systematic number bonds within 107 - Number bonds to 10
1AS-2 Read, write and interpret equations containing addition (+), subtraction (-) and equals (=) symbols, and relate additive expressions and equations to real-life contexts.	Autumn Block 2	4 - Fact families - addition facts 8 - Addition - add together 9 - Addition - add more 10 - Addition problems 11 - Find a part 12 - Subtraction - find a part 13 - Fact families - the eightfacts 14 -Subtraction - take away/cross out (How many left?) 15 - Subtraction - take away (How many left?) 16 - Subtraction on a number line
	Spring Block 2	Spring steps to follow in November 2022

Note- In the WRM schemes, odd and even numbers are explored both in Reception and Y 2 but there is no explicit step in Y1

Year 2 RTP Addition \& subtraction

Ready to progress criteria	Block	Steps
2AS-1 Add and subtract across 10	Autumn 2	$9-$ Add across a 10 $10-$ Subtract across a 10 $11-$ Subtract from a 10 $12-$ Subtract 1-digit number from a 2-digit number (across a 10)
2AS-2 Recognise the subtractionstructure of 'difference' and answer questions of the form, "How many more...?".	Spring 1	Spring steps to follow in November 2022
2AS-3 Add and subtract within 100 by applying related one-digit addition and subtraction facts: add and subtract only ones or only tens to/from a two-digit number.	Autumn 2	$9-$ Add across a 10 $10-$ Subtract across a 10 $11-$ Subtract from a 10 $12-$ Subtract 1-digit number from a 2-digit number (across a 10) 13 - 10 more, 10less
2AS-4 Add and subtract within 100 by applying related one-digit addition and subtraction facts: add and subtract any 2 two-digit numbers.	Autumn 2	

Year 3 RTP Addition \& subtraction

Ready to progresscriteria	Block	Steps
3AS-1 Calculate complements to 100	Autumn Block 2	19 - Complements to 100
	Summer 2	Summer steps to follow in March 2023
3AS-2 Add and subtract up to three-digit numbers using columnarmethods.	Autumn Block 2	11 - Add two numbers (no exchange) 12 - Subtract two numbers (no exchange) 13 - Add two numbers (across a10) 14 - Add two numbers (across a 100) 15 -Subtract two numbers (across a 10) 16- Subtract two numbers (across a 100) 17 - Add 2-digit and 3-digit numbers 18 - Subtract a 2 -digit number from a 3-digit number
3AS-3 Manipulate the additive relationship: Understand the inverse relationship between addition and subtraction, and how both relate to the part-part-whole structure. Understand and use the commutative property of addition, and understand the related property for subtraction.	Autumn Block 2	21 - Inverse operations 22 - Make decisions
	Summer 2	Summer steps to follow in March 2023

Addition, subtraction, multiplication and division

Ready to progress criteria	Block	Steps
6AS/MD-1 Understand that 2 numbers can be related additively or multiplicatively, and quantify additive and multiplicative relationships (multiplicative relationships restricted to multiplication by a whole number).	Spring 1	Spring steps to follow in November 2022
6AS/MD-2 Use a given additive or multiplicative calculation to derive or complete a related calculation, using arithmetic properties, inverse relationships, and place-value understanding.	Autumn 2	$8-$ Solve problems with multiplication $10-$ Division using factors $13-$ Solve problems with division 14 - Solve multi-step problems 17 - Reason from known facts
6AS/MD-3Solveproblemsinvolvingratio relationships.		See under Ratio and proportion
6AS/MD-4 Solve problems with 2 unknowns.		See under Algebra

Multiplication

and

division

Multiplication \& division: Recall/Use

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	- recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers - show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot	- recall and use multiplication and division facts for the 3,4 and 8 multiplication tables	- recall multiplication and division facts for multiplication tables up to $12 \times$ 12 - use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1; multiplying together three numbers - recogniseanduse factor pairs and commutativity in mental calculations	- identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers - know and use the vocabulary of prime numbers, prime factors and composite (nonprime) numbers - establish whether a number up to 100 is prime and recall prime numbers up to 19 - recognise and use square numbers and cube numbers, and the notation for squared (${ }^{2}$) and cubed (${ }^{3}$)	- identify common factors, common multiples and prime numbers - use estimation to checkanswersto calculations and determine, in the context of a problem, an appropriate degree of accuracy
	Spring 2	Autumn 3 Spring 1	Autumn 4 Spring 1	Autumn 3	Autumn 2

Multiplication \& division: Calculations

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	- calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals (=)signs	- write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods	- multiply two-digit and three-digit numbers by a one-digit number using formal written layout	- multiply numbers up to 4 digits by a one- or two-digit number using a formal written method,includinglong multiplication for twodigit numbers - multiply and divide numbers mentally drawing upon known facts - dividenumbersupto4 digits by a one-digit number using the formalwritten method of short division and interpret remainders appropriately for the context - multiply and divide whole numbers and those involving decimals by 10,100 and 1000	- multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of longmultiplication - divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context - dividenumbersupto4 digits by a two-digit number using the formal written method ofshortdivisionwhere appropriate, interpreting remainders according to the context - perform mental calculations, including with mixed operations and large numbers
	Spring 2	Autumn 3 Spring 1	Spring 1	Autumn 3 Spring 1	Autumn 2

Multiplication \& division: Problems

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
- solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher	- solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and divisionfacts, including problems in contexts	- solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects	- solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects	- solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes - solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates	- solve problems involving addition, subtraction, multiplication and division
Summer 1	Spring 2	Spring 1	Spring 1	Autumn 3 Spring 1	Autumn 2

Multiplication \& division: Combined

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
				-solve problems involving addition, subtraction, muttipication and division and a combination of these, including understanding the meaning of the equals sign• use their knowledge ofthe order of operations to cary out calculations involving the four operations	
			Spring 1	Autumn 2	

Year 1 RTP Numberfacts

Ready to progress criteria	Block	Steps
1NF-1 Develop fluency in addition and subtraction facts within 10	See under Addition \& subtraction	
1NF-2 Count forwards and backwards in multiples of 2,5 and 10, up to 10 multiples, beginning with any multiple, and count forwards and backwards through the odd numbers.	Summer 1	Summer 4
	Summer 5	Summer steps to follow in March 2023

Year 3 RTP Numberfacts

Ready to progresscriteria	Block	Steps
3NF-1 Secure fluency in addition and subtraction facts that bridge 10, through continued practice.		See under Addition \& subtraction
3NF-2 Recall multiplication facts, and corresponding division facts, in the 10, 5, 2, 4 and 8 multiplication tables, and recognise products in these multiplication tables as multiples of the correspondingnumber.	Autumn Block 3	3 - Multiples of 2 4 - Multiples of 5 and 105 - Sharing and grouping 9 - Multiply by 4 10 - Divide by 4 11 - The 4 times-table
3NF-3 Apply place-value knowledge toknown additive and multiplicative number facts (scaling facts by 10).	Spring 1	Spring steps to follow in November 2022
	Spring 3	Spring steps to follow in November 2022

Year 4 RTP Numberfacts

Ready to progresscriteria	Block	Steps
4NF-1 Recall multiplication and divisionfacts up to 12×12 and recognise products in multiplication tables as multiples of the corresponding number.	Autumn 4	All 13 steps in this block relate to this criterion
	Spring 1	Spring steps to follow in November 2022
4NF-2Solve division problems, with two-digit dividends and one-digit divisors, that involve remainders, and interpret remainders appropriately according to the context.	Autumn 4	All 13 steps in this block relate to this criterion
	Spring 1	Spring steps to follow in November 2022
4NF-3 Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 100).	Spring 1	Spring steps to follow in November 2022
	Spring 4	Spring steps to follow in November 2022

Year 5 RTP Numberfacts

Ready to progress criteria	Block	Steps
5NF-1 Securefluencyin multiplication table facts, and corresponding division facts, through continued practice.	Autumn 3	1 - Multiples - - Common multiples 3 - Factors 4-Common factors 6 - Square numbers
	Spring 1	Spring steps to follow in November 2022
	Spring 2	Spring steps to follow in November 2022
5NF-2 Applyplace-value knowledgeto known additive and multiplicative number facts (scaling facts by 1 tenth or 1 hundredth).	Autumn 3	10-Divide by 10, 100 and 1,000
	Spring 3	Spring steps to follow in November 2022

Year 2 RTP Multiplication \& division

Ready to progress criteria	Block	Steps
2MD-1 Recognise repeated addition contexts, representing them with multiplication equations and calculating the product, within the 2,5 and 10 multiplication tables.	Spring 2	Spring 4
	Summer 2	Spring steps to follow in November 2022
2MD-2 Relate grouping problems where the number of groups is unknown to multiplication equations with a missing factor, and to division equations (quotitive division).	Spring 2	Summer steps to follow in March 2023

Year 3 RTP Multiplication \& division

Ready to progresscriteria	Block	Steps
3MD-1 Apply known multiplication and division facts to solve contextual problems with different structures, including quotitive and partitive division.	Autumn 3	All 15 steps in this block relate to this criterion
	Spring 1	Spring steps to follow in November 2022

Year 4 RTP Multiplication \& division

Ready to progress criteria	Block	Steps
4MD-1 Multiply and divide whole numbers by 10 and 100 (keeping to whole number quotients); understand this as equivalent to making a number 10 or 100 times the size.	Spring 1	Spring steps to follow in November 2022
4MD-2 Manipulate multiplication and division equations, and understand and apply the commutative property of multiplication.	Autumn 4	All 13 steps in this block relate to this criterion
4MD-3 Understand and apply the distributive property of multiplication.	Spring 1	Spring steps to follow in November 2022

Year 5 RTP Multiplication \& division

Ready to progresscriteria	Block	Steps
5MD-1 Multiply and divide numbers by 10 and 100; understand this as equivalent to making a number 10 or 100 times the size, or 1 tenth or 1 hundredth times the size.	Autumn 3	8 - Multiply by 10, 100 and 1,000 9 - Divide by 10, 100 and 1,000 10 - Multiples of 10,100 and 1,000
	Summer 3	Summer steps to follow in March 2023
5MD-2 Find factors and multiples of positive whole numbers, including common factors and common multiples, and express a given number as a product of 2 or 3 factors.	Autumn 3	1 - Multiples 2 -Common multiples 3 - Factors 4 - Common factors 6 - Square numbers
5MD-3 Multiply any whole number with up to 4 digits by any one-digit number using a formal written method.	Spring 1	Spring steps to follow in November 2022
5MD-4 Divide a number with up to 4 digits by a one-digit number using a formal written method, and interpret remainders appropriately for the context.	Spring 1	Spring steps to follow in November 2022

Year 6RTP

Addition, subtraction, multiplication and division

Ready to progress criteria	Block	Steps
6AS/MD-1 Understand that 2 numbers can be related additively or multiplicatively, and quantify additive and multiplicative relationships (multiplicative relationships restricted to multiplication by a whole number).	Spring 1	Spring steps to follow in November 2022
6AS/MD-2 Use a given additive or multiplicative calculation to derive or complete a related calculation, using arithmetic properties, inverse relationships, and place-value understanding.	Autumn 2	$8-$ Solve problems with multiplication $10-$ Division using factors $13-$ Solve problems with division 14 - Solve multi-step problems 17 - Reason form known facts
6AS/MD-3Solveproblemsinvolvingratio relationships.	See under Ratio and proportion	
6AS/MD-4 Solve problems with 2 unknowns.		See under Algebra

Fractions, decimals,

percentages

Fractions: Recognise and write

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
- recognise, find and name a half as one of two equal parts of an object, shape or quantity - recognise, find and name a quarter as one of four equal parts of an object, shape or quantity	- recognise,find, name and write fractions ${ }^{1},{ }_{3}{ }_{4}^{2}$ 344 and ${ }^{4}$ of a length, shape, set of objects or quantity	- count up and down in tenths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers or quantities by 10 - recognise, find and write fractions of a discrete set of objects: unit fractions and nonunit fractions with small denominators - recogniseanduse fractions as numbers: unit fractions and nonunit fractions with small denominators	- count up and down in hundredths; recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten.	- identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths - recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements >1 as a mixed number [for example, ${ }^{2+}{ }_{5}$ ${ }_{5}^{4}={ }_{5}^{6}=\mathbf{1}_{5}^{1}{ }_{5}$	
Summer 2	Summer 1	Spring 3	Spring 4 Summer 1	Autumn 4	

Fractions: Compare

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	- Recognise the equivalence of ${ }^{2}$ and $\frac{1}{2}$	- recogniseand show, using diagrams, equivalent fractions with small denominators - compare and order unit fractions, and fractions with the same denominators	- recognise and show, using diagrams, families of common equivalent fractions	- compare and order fractions whose denominators are all multiples of the same number	- use common factors to simplify fractions; use common multiples to express fractions in the same denomination - compare and order fractions, including fractions >1
	Summer 1	Spring 3	Spring 3	Autumn 4	Autumn 3

Fractions: Calculations

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	- write simple fractions for example, ${ }^{1}$ of $6=$ 3	- add and subtract fractions with the same denominator within one whole [for example, ${ }^{5+}$ 1 7 ${ }^{6}{ }_{7}^{7}$	- add and subtract fractions with the same denominator	- add and subtract fractions with the same denominator and denominators that are multiples of the same number - multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams	- add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions - multiply simple pairs of proper fractions, writing the answer in its simplest form [for example, $\left.{ }_{4}^{1} \times{ }_{2}^{1}={ }_{8}^{1}\right]$ - divide proper fractions by whole numbers [for example $\left.{ }_{3}^{1} \div 2={ }_{6}^{1}\right]$
	Summer 1	Summer 1	Spring 3	Autumn 4 Spring 2	Autumn 3 Autumn 4

Fractions: Solve problems

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
		- solve problems that involve all of the above	- solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number		
		Spring 3			

Decimals: Recognise, write, compare

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
			- recognise and write decimal equivalents of any number of tenths or hundredths - recogniseand write decimal equivalents to 113 $4^{\circ} 2^{\circ} 4$ - round decimals with one decimal place to the nearest whole number - compare numbers with the same number of decimal places up to two decimal places	- read and write decimal numbers as fractions [for example, 0.71= 71 100 - recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents - round decimals with two decimal places to the nearest whole number and to one decimal place - read, write, order and compare numbers with up to three decimal places	- identify the value of each digit in numbers givento three decimal places
			Spring 4 Summer 1	Spring 3 Summer 3	Spring 3

Fractions, decimals and percentages

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
			- solve simple measure and money problems involving fractions and decimals to two decimal places	- recognise the per cent symbol (\%) and understand that per cent relates to 'number of parts per hundred', and write percentages as a fraction with denominator 100, and as adecimal - solve problems which require knowing percentage and decimal equivalents of ${ }^{1},{ }^{1},{ }^{1},{ }^{2}, 4$ and 24555 those fractions with a denominator of a multiple of 10 or 25	- associate a fraction with division and calculate decimal fraction equivalents [for example, 0.375] for a simple fraction [for example, 3] 8 - recall and use equivalences between simple fractions, decimals and percentages, including in different contexts
			Spring 3 Spring 4 Summer1	Spring 3	Spring 3 Spring 4

Year 3 RTP Fractions

Ready to progresscriteria	Block	Steps
3F-1 Interpret and write proper fractions to represent 1 or several parts of a whole that is divided into equal parts.	Spring 3	Spring steps to follow in November 2022
3F-2 Find unit fractions of quantities using known division facts (multiplication tables fluency).	Summer 1	Summer steps to follow in March 2023
3F-3 Reason about the location of any fraction within 1 in the linear number system.	Spring 3	Spring steps to follow in November 2022
3F-4 Add and subtract fractions with the same denominator, within 1	Summer 1	Summer steps to follow in March 2023

Year 4 RTP Fractions

Ready to progress criteria	Block	Steps
4F-1 Reason about the location of mixed numbers in the linear number system.	Spring 3	Spring steps to follow in November 2022
4F-2 Convert mixed numbers to improper fractions and vice versa.	Spring 3	Spring steps to follow in November 2022
4F-3 Add and subtract improper and mixed fractions with the same denominator, including bridging whole numbers.	Spring 3	Spring steps to follow in November 2022

Year 5 RTP Fractions

Ready to progresscriteria	Block	Steps
5F-1 Find non-unit fractions of quantities.	Spring 2	Spring steps to follow in November 2022
5F-2 Find equivalent fractions and understand that they have the same value and the same position in the linear number system.	Autumn 4	1 - Find fractions equivalent to a unitfraction 2 - Find fractions equivalent to a non-unit fraction 3 - Recognise equivalentfractions
5F-3 Recall decimal fraction equivalents for ${ }^{1}$, ${ }^{1},{ }^{1}$ and ${ }^{1}$ and for multiples of these proper fractions.	Spring 3	Spring steps to follow in November 2022

Year 6 RTP Fractions

Ready to progress criteria	Block	Steps
6F-1 Recognisewhenfractions canbe simplified, and use common factors to simplify fractions.	Autumn 3	1 - Equivalent fractions and simplifying 2- Equivalent fractions on a number line
6F-2 Express fractions in a common denomination and use this to compare fractions that are similar in value.	Autumn 3	3-Compare and order (denominator)
6F-3 Compare fractions with different denominators, including fractions greater than 1, using reasoning, and choose between reasoning and common denomination as a comparison strategy.	Autumn 3	3-Compare and order (denominator) 4-Compare and order (numerator)

Ratio and

 proportion, algebra
Ratio and proportion

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
					- solve problems involving the relative sizes of two quantities where missing valuescan be found by using integer multiplication and division facts - solve problems involving the calculation/use of percentages for comparison - solve problems involving similar shapes where the scale factor is known or can be found - solve problems involving unequal sharing and grouping using knowledge of fractions and multiples

Algebra

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
- solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=\square-9$	- recogniseanduse the inverse relationship between addition and subtraction and use this to check calculations andsolvemissing number problems	- solve problems, including missing number problems			- use simple formulae - generate and describe linear number sequences - express missing number problems algebraically - find pairs of numbers that satisfy an equation with two unknowns - enumerate possibilities of combinations of two variables
					Spring 2

[^0]
Year 6RTP

Addition, subtraction, multiplication and division

Ready to progress criteria	Block	Steps
6AS/MD-1 Understand that 2 numbers can be related additively or multiplicatively, and quantify additive and multiplicative relationships (multiplicative relationships restricted to multiplication by a whole number).		See under Addition and subtraction, multiplication and division
6AS/MD-2 Use a given additive or multiplicative calculation to derive or complete a related calculation, using arithmetic properties, inverse relationships, and place-value understanding.		See under Addition and subtraction, multiplication and division
6AS/MD-3Solveproblemsinvolvingratio relationships.	Spring 1	Spring steps to follow in November 2022
6AS/MD-4 Solve problems with 2 unknowns.	Spring 2	Spring steps to follow in November 2022

Measurement

Using measures

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
- compare, describe and solve practical problems for: lengths and heights $>$ mass/weight $>$ capacity and volume > time - measure and begin to record the following: lengths and heights > mass/weight \rightarrow capacity and volume $>$ time (hours, minutes, seconds)	- choose and use appropriate standard units to estimate and measure length/height in any direction (m/cm); mass (kg/g); temperature (${ }^{\circ} \mathrm{C}$); capacity (litres/ml) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels - compare and order lengths, mass, volume/capacity and record the results using >,< and =	- measure, compare, addand subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg/g); volume/capacity ($1 / \mathrm{ml}$)	- Convertbetween different units of measure [for example, kilometre to metre; hour to minute] - estimate, compare and calculate different measures	- convert between different units of metric measure - understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints - use all four operations to solve problems involving measure [for example, length, mass, volume, money] using decimal notation, including scaling	- solve problems involving the calculation and conversion of units of measure, using decimal notation up to 3 d.p. where appropriate - use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to 3d.p. - convertbetween miles and kilometres

Spring 4 Spring 5 Summer 6	Spring 3 Spring 4	Spring 2 Spring 4	Spring 2 Summer 3	Spring 4 Summer 5 Summer 6	Autumn 5

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
- recognise and know the value of different denominations of coins andnotes	- recognise and use symbols for pounds ($£$) and pence (p); combine amounts to make a particular value - find different combinations of coins that equal the same amounts of money - solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change	- add and subtract amounts of money to give change, using both $£$ and p in practical contexts	- estimate, compare and calculate different measures, including money in pounds and pence	- use all four operations to solve problems involving measure [for example, money]	
Summer 5	Spring 1	Summer 2	Summer 2	Summer 3	

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
- sequence events in chronological order using language [for example, before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening] - recogniseanduse language relating to dates, including days of the week, weeks, months and years - tell the time to the hour and half past the hour and draw the hands on a clock face to show these times	- compare and sequence intervals of time - tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times - know the number of minutes in an hour and the number of hours in a day	- tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12hour and 24-hour clocks - estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes and hours; use vocabulary such as o'clock, a.m./p.m., morning, afternoon, noon and midnight - know the number of seconds in a minute and the number of days in each month, year and leap year - compare durations of events [for example to calculate the time taken by particular events ortasks]	- read, write and convert time between analogue and digital 12- and 24-hour clocks - solve problems involving converting from hours to minutes; minutes to seconds;yearsto months; weeks to days	- solve problems involving converting between units of time	- use, read, write and convert between standard units, converting measurements of time from a smaller unit of measure to a larger unit, and vice versa Note - In the WRM schemes, time conversions are covered in Y5; the Y6 block concentrates on
Summer 6	Summer 2	Summer 3	Summer 3	Summer 5	Autumn 5

Perimeter, area, volume

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
		- measure the perimeter of simple2-Dshapes	- measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres - find the area of rectilinearshapes by counting squares	- measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres - calculate and compare the area of rectangles (including squares) and including using standard units, square centimetres (cm^{2}) and square metres (m^{2}) and estimate the area of irregular shapes - estimate volume [for example, using blocks to build cuboids] and capacity [for example, using water]	- recognise that shapes withthe same areascan have different perimeters and vice versa - recognise whenit is possible to use formulae for area and volume of shapes - calculate the area of parallelograms and triangles - calculate, estimate and compare volume of cubes and cuboids using standard units, including cubic centimetres (cm^{3}) and cubic metres $\left(\mathrm{m}^{3}\right)$, and extending to other units
		Spring 2	Autumn 3 Spring 2	Spring 4 Summer 6	Spring 5

Geometry

2-D shapes

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
- recognise and name common 2-D shapes [for example, rectangles (including squares), circles and triangles]	- identify and describe the properties of 2-D shapes, including the number of sides and line symmetry in a vertical line - identify 2-D shapes on the surface of 3-D shapes, [for example, a circle on a cylinder and a triangle on a pyramid] - compare and sort common 2-D shapes and everyday objects	- draw 2-D shapes	- compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes - identify lines of symmetry in 2-D shapes presented in different orientations	- distinguish between regular and irregular polygons based on reasoning about equalsides and angles. - use the properties of rectangles to deduce related facts and find missing lengths and angles	- draw 2-D shapes using given dimensions and angles - compare and classify geometric shapes based on their properties and sizes - illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius
Autumn 3	Autumn 3	Summer 4	Summer 4	Summer 1	Summer 1

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
- recognise and name common 3-D shapes [for example, cuboids (including cubes), pyramids and spheres]	- recognise and name common 3-D shapes [for example, cuboids (including cubes), pyramids and spheres] - compare and sort common 3-D shapes and everyday objects	- make3-Dshapes using modelling materials; recognise 3-D shapes in different orientations and describe them		- identify 3-D shapes, including cubes and other cuboids, from 2-D representations	- recognise, describe and build simple 3-D shapes, including making nets
Autumn 3	Autumn 3	Summer 4		Summer 1	Summer 1

Angles and lines

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
		- recognise angles as a property of shape or a description of a turn - identify right angles, recognise that two right angles make a halfturn, three make three quarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle - identify horizontal and vertical lines and pairs of perpendicular and parallel lines	- identify acute and obtuse anglesand compare and order angles up to two right angles by size - identify lines of symmetry in 2-D shapes presented in different orientations - complete asimple symmetric figure with respect to a specific line of symmetry	- know angles are measured in degrees: estimate and compare acute, obtuseand reflex angles - draw given angles, and measure them in degrees - identify: > angles at a point and one whole turn (total 360°) angles at a point on a straight line and ${ }^{1}$ a turn (total $180^{\circ}{ }^{2}$ > other multiples of 90°	- find unknown angles in any triangles, quadrilaterals, and regular polygons - recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles
		Summer 4	Summer 4	Summer 2	Summer 1

Position and direction

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
- describeposition, direction and movement, including whole, half, quarter and three-quarter turns	- order and arrange combinations of mathematical objects in patterns and sequences - use mathematical vocabulary to describeposition, direction and movement, including movement in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and threequarter turns (clockwise and anti- clockwise)		- describe positions on a 2-D grid as coordinates inthe first quadrant - describe movements between positions as translations of a given unit to the left/right and up/down - plot specified points and draw sides to complete a given polygon	- identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed	- describepositions on the full coordinate grid (all four quadrants) - draw and translate simple shapes on the coordinate plane, and reflect them in the axes
Summer 3	Summer 4		Summer 6	Summer 2	Summer 2

Year 1 RTP Geometry

Ready to progress criteria	Block	Steps
1G-1 Recognise common 2Dand 3D shapes presented in different orientations, and know that rectangles, triangles, cuboids and pyramids are not always similar to one another.	Autumn 3	1- Recognise and name 3-D shapes 2- Sort 3-D shapes 3-Recognise and name 2-D shapes 4- Sort 2-D shapes $5-$ Patterns with 2-D and 3-D shapes
1G-2 Compose 2D and 3D shapes from smaller shapes to match an example, including manipulating shapes to place them in particular orientations.	Autumn 3	1- Recognise and name 3-D shapes 2- Sort 3-D shapes 3-Recognise and name 2-D shapes 4-Sort 2-D shapes $5-$ Patterns with 2-D and 3-D shapes

Year 2 RTP Geometry

Ready to progresscriteria	Block	Steps
2G-1 Recognise common2Dand3D shapes presented in different orientations, and know that rectangles, triangles, cuboids and pyramids are not always similar to one another.	Autumn 3	1- Recognise 2-D and 3-D shapes 2- Count sides on 2-Dshapes 3-Count vertices on 2-D shapes 7 - Sort 2-D shapes
		8-Count faces on 3-D shapes 9- Count edges on 3-D shapes $10-$ Count vertices on 3-D shapes $11-$ Sort 3-D shapes

Year 3 RTP Geometry

Ready to progress criteria	Block	Steps
3G-1 Recognise right angles as a property of shape or a description of a turn, and identify right angles in 2D shapes presented in different orientations.	Summer 4	Summer steps to follow in March 2023
3G-2 Draw polygons by joining marked points, and identify parallel and perpendicular sides.	Summer 4	Summer steps to follow in March 2023

Year 4 RTP Geometry

Ready to progress criteria	Block	Steps
4G-1 Draw polygons, specified by coordinates in the first quadrant, and translate within the first quadrant.	Summer 4	Summer steps to follow in March 2023
4G-2 Identify regular polygons, including equilateral triangles and squares, as those in which the side-lengths are equal and the angles are equal. Find the perimeter of regular and irregular polygons.	Spring 2	Summer 4
4G-3 Identify line symmetry in 2D shapes presented in different orientations. Reflect shapes in a line of symmetry and complete a symmetric figure or pattern with respect toa specified line of symmetry.	Summer 4	Summer steps to follow in March 2023

Year 5 RTP Geometry

Ready to progress criteria	Block	Steps
5G-1 Compare angles, estimate and measure angles in degrees $\left({ }^{\circ}\right)$ and draw angles of a given size.	Summer 1	Summer steps to follow in March 2023
5G-2 Compare areas and calculate the area of rectangles (including squares) using standard units.	Spring 4	Spring steps to follow in November 2022

Year 6 RTP Geometry

Ready to progress criteria	Block	Steps
6G-1 Draw, compose, and decompose shapes according to given properties, including dimensions, angles and area, and solve related problems.	Spring 5	Spring steps to follow in November 2022
	Summer 1	Summer steps to follow in March 2023

Statistics

Present and interpret data

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	- interpret and construct simple pictograms, tally charts, block diagrams and simple tables	- interpret and present data using barcharts, pictograms and tables	- interpret and presentdiscrete and continuous data using appropriate graphical methods, including bar charts and time graphs	-complete, read and interpret information in tables, including timetables\quad• interpret and construct pie charts and line graphs anduse these to solve problems	

Solve statistical problems

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	- ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity - ask and answer questions about totalling and comparing categorical data	- solve one-step and two-step questions [for example, 'How many more?' and 'How many fewer?'] using information presented in scaled barcharts and pictograms and tables	- solvecomparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs	- solvecomparison, sum and difference problems using information presented in aline graph	- calculate and interpret the mean as an average
	Summer 3	Summer 5	Summer 5	Spring 5	Spring 6

[^0]: Note - although formal algebraic notation is not introduced until
 Y6, algebraic thinking starts much earlier as exemplified by the
 'missing number' objectives from $Y 1 / 2 / 3$

